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This paper concerns the comparison of electroconvective instability in concentration polarization at an
ion-selective membrane with previously reported nonequilibrium electro-osmotic instability. Electro-osmotic
formulation represents an asymptotic limit case of the electroconvective one. An improved nonequilibrium
electro-osmotic slip formula is derived. Linear stability analysis for various nonequilibrium electro-osmotic
formulations is carried out, including the analytic studies of the short- and long-wave limits. The obtained
results are compared with those for a full electroconvective formulation. It is observed that the shortwave
singularity typical for the nonequilibrium electro-osmotic instability is removed in the full electroconvective
formulation. The effect of ionic diffusivities ratio on stability is discussed.
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I. INTRODUCTION

The term electroconvection is being used in at least four
different contexts. Thus, by this term one often refers to the
electric field induced flow of nematic liquid crystals �1–3�.
Besides, the same term relates to the flow of liquid dielec-
trics caused by the action of electric field on the space charge
of ions of the appropriate sign injected in a low quantity into
the fluid �4–6�. This term is also being applied to the effects
of an electric field acting on the surface charge accumulated
at the interface between two weakly conducting fluids.
Namely this has been studied by Taylor, who in the mid-
1960s introduced the leaky dielectric model to explain the
behavior of droplets deformed by a steady field. This model,
later extensively used by Melcher �7�, formed an important
step in the construction of a unified treatment of electrohy-
drodynamics of liquid dielectrics �8�.

As opposed to the aforementioned systems, hereon we
refer by term electroconvection to the flow of strong electro-
lytes at moderate concentration, that is, to liquids abundant
with charge carriers of both signs. This type of electrocon-
vection has been invoked, in particular, as a mechanism cru-
cial for overlimiting conductance through cation-exchange
electrodialysis membranes �9,10� and is important for rami-
fied electrodeposition �11–13� and layering of colloid crys-
tals on electrode surfaces �14,15�.

The following two modes of electroconvection in strong
electrolytes may be distinguished. The first is the relatively
recently invoked “bulk” electroconvection, due to the vol-
ume electric forces acting on a macroscopic scale in a locally
quasielectroneutral electrolyte �16–23�. The second is the
common electro-osmosis, either of the classical “first” kind
or of the “second” kind, according to terminology of Dukhin
�24�. Electro-osmosis of the “first” kind relates to the elec-
trolyte slip resulting from the action of the tangential electric
field upon the space charge of a quasiequilibrium electric
double layer �24–29�. Electro-osmosis of the “second kind”

invoked by Dukhin �24–27� pertains to the similar action of
a tangential electric field upon the extended space charge of
the nonequilibrium double layer �42�. In our previous studies
we developed a theory of nonequilibrium electro-osmotic
slip of this kind.

We showed that this slip causes instability of quiescent
passage of a dc electric current from an electrolyte solution
into a charge selective solid, such as an electrode or ion-
exchange electrodialysis membrane �9–33�. This instability
was of a singular shortwave type: marginal stability curve in
the control parameter �voltage� versus wave number plane
did not have a minimum whereas the linear growth rate in-
creased indefinitely upon the increase of the wave number.
This suggested a need to look for a regularized formulation
and a wave number selection criterion. �Numerical computa-
tions in the full nonlinear problem showed selection of con-
vective vortices on the length scale of the liquid layer thick-
ness, likely due to shortwave cutoff by the finite difference
grid.� Inclusion of higher order terms into the limiting for-
mulation did provide the necessary regularization �33�, al-
though it is worth remembering in this connection that
electro-osmotic slip as such is just a limiting expression of
electroconvection in the boundary �electric double� layer
whose thickness is negligible compared to the macroscopic
length scale in the system. Thus it seems natural in discuss-
ing an adequate regularization of the shortwave catastrophe
to compare linear stability results for the limiting electro-
osmotic formulations with those for the full electroconvec-
tive one. Such a comparison is the central goal of the present
study.

Concentration polarization �CP� is the electrochemical
term for a complex of effects related to the formation of
concentration gradients in electrolyte solution adjacent to a
permselective �charge selective� solid/liquid interface upon
the passage of a direct electric current. Expression of CP is a
current/voltage �CV� curve of a characteristic shape: current
saturation at the “limiting” value, corresponding to the van-
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ishing interface concentration is followed by inflexion and
transition to the “overlimiting” conductance regime, accom-
panied by the appearance of the low frequency excess elec-
tric noise. The search for a mechanism of “overlimiting”
conductance and the related noise phenomena was the main
motivation for our study of electroconvection.

Our presentation is organized as follows. In Sec. II we
recapitulate the formulation for electroconvection in a solu-
tion layer flanked by two solid cation-selective walls. �In our
previous studies we dealt with a less physical case of a dif-
fusion layer at such a wall.� Furthermore, we outline the
theory of quiescent CP in such a layer and summarize the
main features of nonequilibrium electric double layer. This is
followed by a review of two types of electroconvection in
our system: bulk electroconvection, due to the action of the
self-consistent electric field upon the residual space charge of
stoichiometrically locally electroneutral bulk; and electro-
osmotic slip due to the electric forces acting in the diffuse
part of the electric double layer. Furthermore, we derive the
full expression for the limiting nonequilibrium electro-
osmotic slip, taking into account contributions disregarded in
our previous leading order derivation �31�. Next, in Sec. III
we employ this, and the previously derived leading order slip
formula to study the linear hydrodynamic stability of quies-
cent concentration polarization, while taking into account
bulk electroconvection, which universally has a stabilizing
effect. Finally, in Sec. IV we compare these linear stability
results for the limiting slip formulations with the correspond-
ing results for the full electroconvective formulation. It is
shown that the shortwave blow up present in all limiting
formulations is removed in the full formulation, providing
for a linear wave number selection criterion. Except for this
feature, the improved slip formula derived in Sec. II yields a
neutral stability curve extremely close to that in full formu-
lation. Finally, it is observed that the “two solid walls” for-
mulation, as opposed to that for “diffusion layer” yields a
linear growth rate of the Nikolayewsky type �48� in which a
shortwave instability is accompanied by a slow decay of the
long wave mode. This may provide for a spatiotemporal
chaos in the system—possibly a source of the excess electric
noise in the overlimiting conductance.

II. TWO TYPES OF ELECTROCONVECTION IN
CONCENTRATION POLARIZATION, NONEQUILIBRIUM

ELECTRIC DOUBLE LAYER, AND NONEQUILIBRIUM
ELECTRO-OSMOTIC SLIP

The prototypical two-dimensional model problem for con-
centration polarization in a layer of a univalent electrolyte
flanked by two ideally permselective cation-exchange mem-
branes under the passage of a normal electric current in the
dimensionless form reads �10,31,34�, �tilded notations are
used below for the dimensional variables, as opposed to their
untilded dimensionless counterparts�:

Equations �−��x�� , 0�y�2�:

ct
+ + Pe�v · � �c+ =

D + 1

2
� ��c+ + c+ � �� , �1�

ct
− + Pe�v · � �c− =

D + 1

2D
� ��c− − c− � �� , �2�

�2�� = c− − c+, �3�

1

Sc
vt = − � p + �� � � + �v , �4�

� · v = 0. �5�

The Nernst-Planck equations �1� and �2� describe convec-
tive electrodiffusion of cations and anions, respectively.
Equation �3� is the Poisson equation for the electric potential,
where c+−c− in the right-hand side is the space charge due to
a local imbalance of ionic concentrations. The Stokes equa-
tion �4� is obtained from the full momentum equation by
omitting the nonlinear inertia terms. Finally, Eq. �5� is the
continuity equation for an incompressible solution. Spatial
variables in Eqs. �1�–�5� have been nondimensionalized with
the half layer thickness L whereas

t =
t̃D0

L2 , �6�

c+ =
c̃ +

c0 , �7�

c− =
c̃ −

c0 , �8�

� =
F�̃

RT
�9�

are, respectively, the dimensionless time, concentrations of
cations and anions and the electric potential, with c0 the typi-
cal concentration, e.g., average anion concentration in the
layer, F is the Faraday constant, R is the universal gas con-
stant, T is the absolute temperature, and the “salt” diffusivity
D0 is defined as

D0 =
2D+D−

D+ + D−
, �10�

where D+ and D− are the cationic and anionic diffusivities,
respectively. Furthermore, v and p in Eqs. �4� and �5� are the
dimensionless velocity vector and pressure, defined as

v =
ṽ

v0
= uî + wĵ , �11�

p =
p̃

p0
, �12�

with the typical velocity v0 and pressure p0 determined from
the force balance in the dimensional version of the momen-
tum equation �4� as

v0 =
d�RT/F�2

4��L
, �13�

RUBINSTEIN, ZALTZMAN, AND LERMAN PHYSICAL REVIEW E 72, 011505 �2005�

011505-2



p0 =
�v0

L
, �14�

where d is the dielectric constant of the solution and � is the
dynamic viscosity of the fluid. Below we list and discuss the
dimensionless parameters in the system �1�–�5�.

�1� The dimensionless Debye length � is defined as

� =
�dRT�1/2

2F��c0�1/2 . �15�

�2 lies in the range 0.2�10−12��2�2�10−5, for a realistic
macroscopic system with 10−4�L�cm��10−1, 10−4

�c0�mol��1.
�2� The Peclet number Pe is defined as

Pe = �v0L

D0
� , �16�

or, using Eq. �13�,

Pe = �RT

F
�2 d

4��D0
. �17�

As indicated previously �35�, Pe does not depend on c0, L
and for a typical aqueous low molecular electrolyte is of
order unity �more precisely, Pe	0.5�.

�3� Sc is the Schmidt number defined as

Sc =
	

D0
. �18�

Here 	 is the kinematic viscosity of the fluid.
�4� Finally, the relative cationic diffusivity D is defined

as

D =
D+

D−
. �19�

Boundary conditions:
y=0 (cathode membrane’s surface)


�cy
− − c−�y�
y=0 = 0. �20�

Condition �20� states impermeability for anions of an ideally
permselective cation exchange membrane.


c+
y=0 = p1. �21�

This condition, prescribing interface concentration equal to
that of the fixed charges inside the membrane �p1�, is asymp-
totically valid for p1
1 and amounts to disregarding the
coion invasion of an ideally permselective membrane and the
presence of an O�� /�p1� thick boundary layer on the mem-
brane side of the interface


�
y=0 = − V . �22�

This condition, valid for the so-called potentiostatic opera-
tion, specifies at value V �voltage� a potential drop between
the membranes; V is the control parameter in our treatment.


v
y=0 = 0 . �23�

This is the common nonslip condition.

y=2 (anode membrane’s surface):


�cy
− − c−�y�
y=2 = 0, �24�


c+
y=2 = p1, �25�


�
y=2 = 0, �26�


v
y=2 = 0 . �27�

Conditions �24�–�26� are analogous to Eqs. �20�–�23�.
Conditions �20�–�27� are complemented by

lim
l→�

1

2l
�

−l

l �
0

2

c−�x,y�dydx = 2, �28�

specifying the number of anions in the system.
When time dependent situations are addressed, the bound-

ary value problem, Eqs. �1�–�5� and �20�–�28�, is supple-
mented by a suitable set of initial conditions.

The boundary value problem, Eqs. �1�–�5� and �20�–�28�,
possesses a one-dimensional quiescent conduction solution
with v=0, and c+, c−, and � satisfying the relations

�cy
+ + c+�y�y = 0, �29�

�cy
− − c−�y�y = 0, �30�

�2�yy = c− − c+, �31�


�cy
− − c−�y�
y=0,2 = 0, �32�


c+
y=0,2 = p1 �33�

�
0

2

c−�x,y�dy = 2, �34�


�
y=2 = 0, �35�


�
y=0 = − V , �36�

and

p�y� =
1

2
�y

2 + pc, �37�

where pc is an arbitrary integration constant.
For quasiequilibrium conditions the solution of the

boundary value problem, Eqs. �29�–�36�, splits into the
“outer” locally electroneutral solution, valid in the “bulk” of
the segment 0�y�2, and the “inner” or electric double
layer solutions, valid in the � vicinity of the interfaces at y
=0,2 �10,31,34�. The inner and outer solutions are connected
through the standard procedures of matched asymptotic ex-
pansions. The outer leading order solution is that to the
quasielectroneutral boundary value problem:

�c̄y + c̄�̄y�y = 0, 0 � y � 2, �38�

�c̄y − c̄�̄y�y = 0, 0 � y � 2, �39�
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�c̄y − c̄�̄y�
y=0,2 = 0, �40�


�ln c̄ + �̄�
y=0 = ln p1 − V , �41�


�ln c̄ + �̄�
y=2 = ln p1, �42�

�
0

2

c̄�y�dy = 2. �43�

Here

c̄ =
def

c+ = c−, �44�

and Eq. �41� expresses the continuity of the electrochemical
potential of cations �capable of penetrating the interfaces at
y=0,2� across the discontinuities of the electric potential and
ionic concentration, modeling the electric double layer in the
outer problem. The outer �quiescent concentration polariza-
tion� solution is obtained by a straightforward integration of
the boundary value problem, Eqs. �38�–�43�, in the form

c̄�y� =
I

2
y + 1 −

I

2
, �45�

�̄�y� = ln� I

2
y + 1 −

I

2
� + ln

p1

�1 + I
2�2 , �46�

where

I =
def

�c̄y + c̄�y� �47�

is the electric current density in the system. Expression �47�
yields the current-voltage relation

I = 2
1 − e−V/2

1 + e−V/2 . �48�

From Eq. �48�, when V→�, I→ Ilim=2 and, simultaneously,
by Eq. �45�, c̄�0�→0. This is the key feature in the classical
picture of concentration polarization—saturation of the cur-
rent density towards the limiting value, resulting from the
vanishing interface electrolyte concentration at the cathode.
In fact, currents much greater than the limiting one are
readily passed through virtually ideally permselective cation-
exchange membranes �overlimiting conductance mentioned
in Sec. I�. The search for a mechanism for this and the re-
lated occurrence of the excess electric noise provided the
main motivation for the study of electroconvection in strong
electrolytes in general �9,10,31,35–37� and the present study,
in particular.

In order to investigate the stability of the quiescent con-
centration polarization solution, Eqs. �45�–�48�, one has to
allow for lateral motions. In this case too the problem splits
into those for locally quasielectroneutral bulk and the bound-
ary �electric double� layer at the membrane/solution inter-
face. Equations describing the ionic transfer and fluid flow in
the bulk read �35�:

c̄t + Pe�v̄ · � �c̄ =
D + 1

2
� �� c̄ + c̄ � �̄� , �49�

c̄t + Pe�v̄ · � �c̄ =
D + 1

2D
� �� c̄ − c̄ � �̄� , �50�

1

Sc
v̄t = − � p̄ + ��̄ � �̄ + �v̄ , �51�

� · v̄ = 0, �52�

whereas the boundary layer analysis provides, in addition to
boundary conditions, Eqs. �41� and �42�, an expression for
electro-osmotic slip that is the tangential fluid velocity at the
outer edge of the electric double layer. Disregarding this, and
assuming nonslip at the solid wall instead, yields the bulk
electroconvection formulation, for which a long time contro-
versy existed with regard to stability of one-dimensional qui-
escent concentration polarization solution, Eqs. �45�–�48�.
Recently, it has been finally shown that for bulk electrocon-
vection this solution is stable. Moreover, it will be shown
below that the electric force term in Eq. �51� always has a
stabilizing effect on the instability due to nonequilibrium
electro-osmosis.

For electro-osmotic slip at a conductive permselective in-
terface two fundamentally different regimes are to be distin-
guished in accordance with the magnitude of the electric cur-
rent through the interface.

The first, quasiequilibrium electro-osmosis, or electro-
osmosis of the first kind, following terminology of Dukhin
�24�, pertains to currents below the limiting value. For such
currents the diffuse part of the electric double layer �EDL�
preserves its common quasiequilibrium structure essentially
identical with that for zero current. Theory of quasi-
equilibrium electro-osmosis at a permselective interface was
developed by Dukhin �25�. An essential part of this theory is
accounting for polarization of the EDL by the applied tan-
gential electric field, resulting, in particular, in major lateral
pressure drops in the double layer, due to the lateral variation
of the Maxwell stresses. This results, for the tangential ve-
locity u in the double layer, in the equation of the form

−
1

2
���z�2�x + �x�zz + uzz = 0, �53�

where z=y /� is the cathodic boundary layer coordinate �cor-
respondingly, z=2−y /� for the anodic boundary layer�. For a
quasiequilibrium boundary layer, potential ��x ,z� in Eq. �53�
is substituted from the solution of the Poisson-Boltzmann
equation

�zz = c̄�x,0��e�−�̄�x,0� − e−�+�̄�x,0�� �54�

of the form

��x,z� = �̄�x,0� + 2 ln
e�/2 + 1 + �e�/2 − 1�e−�2c̄�x,0�

e�/2 + 1 − �e�/2 − 1�e−�2c̄�x,0�
.

�55�

Here c̄�x ,0�, �̄�x ,0� are, respectively, the electrolyte concen-
tration and the electric potential at the outer edge of the
electric double layer and
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��x� = ��x,0� − �̄�x,0� �56�

is the dimensionless � potential.
Integration of Eq. �53� with Eq. �55� yields for the electro-

osmotic slip velocity, instead of the common Helmholtz-
Smoluchowsky formula,

us = ��̄x �57�

valid for an impermeable interface, the expression

us = ���̄x +
c̄x

c̄
� − 4

c̄x

c̄
ln

1 + e�/2

2
. �58�

A peculiarity of Eq. �58� is that for an ideally permselective
cation exchange membrane maintained at a constant poten-
tial ln c̄+ �̄=const, that is, c̄x / c̄=−�̄x and for �→−�, Eq.
�58� yields

us = − �4 ln 2��̄x. �59�

That is, the factor at −�̄x �electro-osmotic factor� tends to a
maximal upper value upon the increase of � �negative�. This
stands in contrast with the respective prediction of
Helmholtz-Smoluchowsky formula, Eq. �57�, and is a direct
consequence of polarization of the EDL at a permselective
interface.

Hydrodynamic stability of the quiescent concentration po-
larization with a limiting quasiequilibrium electro-osmotic
slip, Eq. �59�, was studied in �28�. It was concluded that
electro-osmotic instability of the first kind, although possible
in principle near the limiting current, was unfeasible for any
realistic low molecular aqueous electrolyte. This conclusion
followed from the fact that an electro-osmotic factor at least
one order of magnitude higher than the limiting value 4 ln 2
is required for this type of instability to occur. This conclu-
sion is valid as long as the system, in particular, EDL re-
mains at quasiequilibrium. Namely this ceases being the case
at the cathodic membrane �y=0� when the current ap-
proaches the limiting value. We already saw that in this case
c̄→0 and �̄→−�, which makes Eq. �54� formally unsuitable
for calculation of � in EDL and, thus, through Eq. �53�, for
calculation of electro-osmotic velocity us. This reflects a fun-
damental structural change which occurs in the system as it
moves away from quasiequilibrium upon I→ Ilim.

Generally, quasiequilibrium is typified by the division of
the system into a locally quasielectroneutral bulk and a qua-
siequilibrium boundary layer �diffuse EDL�. This picture
breaks down upon I→ Ilim, as reflected, in particular, in the
inconsistency of the local electroneutrality approximation
which appears in the basic concentration polarization solu-
tion Eqs. �45�–�48� in this limit. Indeed, according to Eq.
�46�

�yy�0� =
I2

4

1

�1 −
I

2
�2 → �, when I → Ilim = 2. �60�

This implies that for any finite �, however small, setting the
left-hand side of the Poisson equation �3� equal to zero, be-
comes inconsistent. This breakdown, first notified by Levich
�38�, has motivated several studies �39–45,31� of the space

charge of the nonequilibrium electric double layer �also �46�
and references therein�. The picture of it that emerged from a
numerical solution of the one-dimensional problem
�29�–�37� �42�, subsequently confirmed and elaborated by
several numerical and analytic studies �43–45,31,46�, may be
summarized as follows �see Figs. 1�a�, 1�b�, and 2�.

For 0�V=O�1� �I� Ilim�, local electroneutrality holds in
the entire system except for the boundary layer of the order
of thickness � at the left edge of the region. In the respective
electroneutral region a linear ionic concentration profile
holds in accordance with Eq. �45�. The maximal slope of the
concentration profile in these conditions is 1 �which corre-

FIG. 1. �a� Ionic concentration profiles �c+: continuous lines, c−:
dashed lines� for �=0.01 and four values of voltage �1−V=0, 2
−V=7, 3−V=15, and 4−V=25�. �b� Space charge density �c+

−c−� profile for �=10−2 and four values of voltage �1−V=0, 2−V
=7, 3−V=15, and 4−V=25�.
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sponds to I= Ilim=2. This picture remains essentially valid up
to V=O�
ln �
� �I� Ilim�. For O�
ln �
��V�O��−1� �I Ilim�,
the following three regions may be distinguished �from right
to left�. The quasielectroneutral “bulk” region with a linear
concentration profile with the approximately unity slope.
This region borders on the left with the extended diffuse
space charge region of a width between O��2/3� and O�1�,
followed by the quasiequilibrium, O��� thick, boundary layer
at the left edge. Upon a further increase of voltage up to
O��−1� the extended space charge region reaches a finite size
O�1� and so does the current increment over the limiting
value �0� I− Ilim=O�1��.

This observation of development in the course of concen-
tration polarization of a nonequilibrium electric double layer
with the extended space charge region lead Dukhin and his
colleagues �24–27� �see also references in �24�� to conjecture
the existence of nonequilibrium electrokinetic phenomena
which they termed electrokinetic phenomena of the second
kind.

Accurate analysis of nonequilibrium electro-osmotic slip
at a flat permselective membrane with an applied voltage V
�VO�
ln �
��, was carried out in �31�, resulting in the ex-
pression

us = −
1

8
V2�

�2c

�x�y

�c

�y
�

y=0

. �61�

Derivation of Eq. �61� employed the asymptotic theory of
the nonequilibrium double electric layer, previously devel-
oped by Listovnichy �44�, and amounted to carrying out an

analysis similar to that outlined above for quasiequilibrium
electro-osmosis. An account for polarization proved to be
more necessary here, since a large potential drop between the
membrane surface and the bulk was concerned, that is,
namely those conditions for which saturation of the electro-
osmotic factor occurred for a quasiequilibrium electro-
osmotic slip. For obtaining a better physical insight into ex-
pression �61�, it is worth noting that 
cy
y=0 is one-half the
local current density through the membrane which is the
main local characteristic controlling the thickness of the non-
equilibrium EDL and thus the electric potential in it.

Expression �61� is valid to the leading quadratic order in
V, for VO�
ln �
�. Below we rederive this expression while
keeping the next order term linear in V. As shown in the next
section, this term is crucially important with regard to its
effect on linear stability for voltage in the physically relevant
range. In our derivation we shall follow that of Ref. �31�. The
leading order inner problem for the depleted �cathodic�
boundary layer near y=0, written in the original variables,
reads

Equations:

�cy
+ + c+�y�y = 0, �62�

�cy
− − c−�y�y = 0, �63�

�2�yy = c− − c+, �64�

−
1

2
���y�2�x + �x�yy + uyy = 0, �65�

w = 0. �66�

�Equation �53� has been reproduced here as Eq. �65� for con-
venience of presentation.�

Boundary conditions:

��x,0� = − V , �67�

c+�x,0� = p1, �68�


�cy
− − c−�y�
y=0 = 0, �69�

u�x,0� = 0. �70�

Solutions c+, c−, �, u, w are to be matched with those of the
electroneutral outer �bulk� problem c+= c̄, c−= c̄, �̄, ū, w̄,
respectively.

Equations �62�–�66� may be rewritten as

��c+ − c−�y = E�c+ + c−� + �I, 0 � y � 2, �71�

�cy
+ = Ec+ + �I, 0 � y � 2, �72�

�Ey = c+ − c−, 0 � y � 2, �73�

where

E = − ��y �74�

and constant I, defined by Eq. �47�, is the current density at
the outer edge of the boundary layer.

FIG. 2. Structure of the nonequilibrium boundary layer. I: qua-
siequilibrium boundary layer, II: extended space charge region, and
III: transition layer to electroneutral bulk. 1: cation concentration, 2:
anion concentration, and 3: space charge density �c+−c−�. �=10−3,
V=20.
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We are concerned with the solution in the extended space
charge region, developing near the cathodic membrane. By
substituting Eqs. �72�–�74� into Eq. �71� and integrating the
resulting equation, we obtain

c+ =
�

2
Ey +

1

4
E2 +

I

2
�y − y0� . �75�

Integration constant y0, corresponding to the value of y at the
outer edge of the extended space charge region, will be de-

termined in due course. By substituting Eq. �75� into Eq. �72�
we obtain the following equation for E:

�2Eyy =
1

2
E3 +

I

2
�y − y0�E + �I . �76�

Seeking an outer asymptotic solution of Eq. �76� as a power
expansion in �, we find that

E = �−
�

y − y0
−

3�2

2I

1

�y − y0�4 + ¯ for y − y0 
 �2/3,

− �2I�y − y0� −
�

2�y − y0�
+

5�2

8�2I

1

�y − y0�5/2 + ¯ for y − y0 � − �2/3.� �77�

This outer solution is valid for O�
y−y0
��2/3, with the
range y−y0
�2/3 corresponding to the quasielectroneutral
bulk, where 
c+−c−
=O��2/3� and 
�y
�O��−2/3�.

On the other hand, the range y−y0�−�2/3 corresponds to
the extended space charge zone with O�
�y
��−2/3. Further-
more, the range 
y−y0
�O��2/3� corresponds to the transi-
tion layer between the two aforementioned regions. To ana-
lyze the solution of Eq. �72� in this layer, we define the
respective layer variables F and z through the equalities

E = I1/3�1/3F , �78�

y − y0 =
�2/3

I1/3 z . �79�

In terms of F and z, Eq. �72� is transformed into the inho-
mogeneous Painleve equation of the second kind of the form

Fzz =
1

2
F3 + zF + 1, �80�

with z in the range −��z��, for �→0. Details of solution
of Eq. �80� for finite z are of no importance for us in the
current context. It is sufficient only to point out that, by
assuming that the left-hand side of Eq. �75� vanishes for z
→ ±�, we obtain an asymptotic representation of F�z� in the
form

F = �−
1

z
−

3

2

1

z4 + o� 1

z4� , z  0,

− �− 2z − −
1

2z
−

5

8�2

1

�− z�5/2 + � 1


z
5/2� , z � 0,�
�81�

in accordance with Eq. �77�. Moreover, function F�z�, as
defined by Eq. �80� with asymptotics �81�, is independent of

�, I, y0, and fully describes the transition from the locally
quasielectroneutral bulk to the extended space charge zone.
Finally, the region 0�y�O��� corresponds to the quasiequi-
librium boundary layer at the membrane/solution interface in
which the following equalities hold to the leading order in �
�47�:

c+ = const � e−�, 0 � y � O��� , �82�

�2�yy = − c+, 0 � y � O��� . �83�

A unique solution of Eqs. �82� and �83� is found using
boundary conditions �33� and �36� and the condition of
matching of �y with E in the extended space charge region
for y /�→�.

Thus, referring to the sketch in Fig. 2, the nonequilibrium
double layer at the cathode y=0 has the following structure:

1. quasiequilibrium sublayer of width O���: 0�y
�O���;

2. extended space charge zone of width of the order
larger than �2/3:

O��� � y � y0 − O��2/3�, O�y0�  �2/3; and

3. transition layer around y0 of width of the order of �2/3,
separating between the extended space charge zone and
quasielectroneutral bulk


y − y0
 � O��2/3� .

It has been shown in Ref. �31� that whenever the extended
space charge is present �VO�
ln �
��, it gives the major
contribution to the electro-osmotic slip. We note that for the
very notion of slip to be applicable, the width of the non-
equilibrium double layer has to shrink to zero upon �→0.
This sets an upper bound on the voltage concerned. On the
other hand, this voltage has to be sufficiently high for the
extended space charge zone to form, that is for electro-
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osmosis to switch from the first to the second kind. As shown
in �31�, the voltage range resulting from these two limita-
tions is


ln �
 � O�V� �
1

�
. �84�

We precede next to calculation of the slip velocity. For this
purpose we evaluate the electric force terms in Eq. �65�. We
have in accordance with Eqs. �74�, �78�, and �79�

�y
2 = I2/3�−4/3F2�z�, z =

y − y0

�2/3 I1/3, �85�

which yields

1

2

�

�x
��y�2 =

1

3
IxI

−1/3�−4/3F2�z� + I2/3�−4/3F�z�F��z�zx.

�86�

Next, in the spirit of analysis in Ref. �31�, let us define “the
cathodic” edge of the quasielectroneutral bulk y* �or z*� by
the equality

c+�y*� − c−�y*� = O��� . �87�

By Eqs. �73� and �78� this implies

I2/3�−1/3F��z*� = O�1�

or

F��z*� = �1/3I−2/3, �88�

which yields, taking into account Eqs. �79� and �81�

z* = I1/3O��−1/6� , �89�

y* = O��1/2� + y0. �90�

Furthermore, for the electric potential in the boundary layer
we have, in accordance with Eqs. �74�, �78�, and �79�,

��x,z� = �
z

z*

F�s�ds + ��x� , �91�

where

��x� =
def

��x,y*� . �92�

Equation �91� yields

�x�x,z� = − F�z�zx + ���x� . �93�

On the other hand, we have, taking into account Eqs. �78�
and �79�,

�yy = − I2/3�−4/3F��z� . �94�

Equations �93� and �94� imply

�x�yy = − ����x� − F�z�zx�I2/3�−4/3F��z� . �95�

Substitution of Eqs. �86� and �95� into Eq. �65� yields

uyy = − ���x��yy +
1

3
I−1/3Ix�

−4/3F2. �96�

Integration of Eq. �96� with boundary condition �70� and
condition at the infinity 
uy
y=y*�z=z*�=0 yields


u
y=y* = − �x�� + �y�y*�y*� −
Ixy0

3

9�2 . �97�

Here

� =
def

− V − ��x� . �98�

Note that

O�V�  O�
ln���
� , O�
��x�
��O�
ln���
� . �99�

Let us evaluate next the second term in parenthesis in Eq.
�97�. �y�y*� is evaluated using the equality


�cy − c�y�
y=y* = 0. �100�

By Eq. �100�, taking into account Eqs. �74�, �87�, and �78�

c�y*� = c−�y*� = c+�y*� =
1

4
E2 +

I

2
�y* − y0�

=
1

4

I2/3�2/3

�z*�2 +
I

2
O��1/2� =

I

2
O��1/2� = cy�y*�O��1/2� .

This, together with Eq. �100�, implies


�y
y=y* = O��−1/2� . �101�

Combined with Eq. �91�, this in turn implies that the second
term in parenthesis in the right-hand side of Eq. �97� is neg-
ligible compared to the first one. On the other hand, by the
analysis in Ref. �31�

y0 = � 3�V

4�
cy
y=0
�2/3

. �102�

Thus, finally, from Eq. �97�, using Eq. �102�, for O�V�
O�
ln �
� we have for the slip velocity


u
y=y* = − V�x −
1

8
V2cxy

cy
. �103�

This expression for the slip velocity is different from Eq.
�61� by the presence of the first Helmoltz-Smoluchovsky
type term. In spite of the fact that this term, linear in �
=O�V�, is smaller by the order of magnitude compared to the
second quadratic term, it might be quite important for a re-
alistic finite V. In the next section this will be illustrated
upon the linear stability analysis of quiescent concentration
polarization. We also point out the form of this term, typical
for quasiequilibrium conditions of electro-osmosis at a solid
impermeable for ions, as opposed to the saturating expres-
sion �58�. This is intuitively understandable, since develop-
ment of the extended space charge amounts essentially to
“detachment” of quasielectroneutral bulk solution from the
solid with the local chemical equilibrium �continuity of the
electrochemical potential� holding only across the thin qua-
siequilibrium part of the electric double layer, but not across
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the bulk nonequilibrium part of it, including the extended
space charge region.

To conclude this section we recapitulate the formulation
of the limiting problem.

Equations �−��x�� , 0�y�2�:

ct + Pe�v · � �c = �c , �104�

D − 1

D + 1
�c + � �c � �� = 0, �105�

1

Sc
vt = − � p + Bec + �v , �106�

� · v = 0. �107�

Here

Bec = � ��� . �108�

Boundary conditions:
y=2 (anodic membrane’s surface):
For this “enriched” membrane/solution interface we as-

sume besides impermeability for anions, Eq. �40�, local equi-
librium Eq. �42� and, correspondingly, a limiting quasiequi-
librium electro-osmotic slip of Dukhin’s type �Eq. �59��.

y=0 (cathodic membrane’s surface):
At the depleted cathodic membrane for voltage in the

range O�
ln �
��V�O�1/�� corresponding to electro-
osmosis of the second kind, we have, besides the anion im-
permeability condition �40�, vanishing of concentration


c
y=0 = 0, �109�

and the slip condition which we rewrite in the form:


w
y=0 = 0, �110�


u
y=0 = HS + EO2. �111�

Here

HS = − V�x, �112�

EO2 = −
1

8
V2cxy

cy
. �113�

Notations �108�, �112�, and �113� have been introduced for
convenience to ease the formulation of a sequence of limit-
ing problems �e.g., electro-osmotic slip of the second kind
without bulk electroconvection: EO2�0, HS=0, Bec=0; full
slip formula without bulk electroconvection: EO2�0, HS
�0, Bec=0; electro-osmotic slip of the second kind with
bulk electroconvection: EO2�0, HS=0, Bec�0 and, finally,
full slip formula with bulk electroconvection: EO2�0, HS
�0, Bec�0.� In Sec. III, stability of quiescent concentration
polarization in these problems will be studied. In Sec. IV
results of this study will be compared with those for the full
electroconvective problem, Eqs. �1�–�5� and �20�–�28�.

III. LINEAR STABILITY OF QUIESCENT
CONCENTRATION POLARIZATION IN THE LIMITING

ELECTRO-OSMOTIC FORMULATIONS

In this section we deal with linear stability analysis of the
limiting current quiescent concentration polarization solution
�Eqs. �45� and �46� with I= Ilim=2�

c0�y� = y , �114�

�0�y� = ln y , �115�

v0 = u0î + w0ĵ = 0, �116�

in the limiting electro-osmotic formulations �104�–�108�,
�40�, �42�, �59�, and �109�–�113�. Because of singularity of
potential �0�y� at y=0 it is preferable to rewrite this bound-
ary value problem in terms of anionic electrochemical poten-

tial �− =
def

ln c−� and concentration c as unknowns in the
form:

Equations �−��x�� , 0�y�2�:

ct + Pe�v · � �c = �c , �117�

ct + Pe�v · � �c =
D + 1

2D
� · �c � �−� , �118�

1

Sc
vt = − � p + Bec + �v , �119�

Bec = � �ln c − �−���ln c − �−� , �120�

� · v = 0. �121�

Boundary conditions:
y=0:


c
y=0 = 0, �122�


�y
−
y=0 = 0, �123�


w
y=0 = 0, �124�


u
y=0 = HS + EO2. �125�

Let us note that boundary condition �122� yields

c�x,y� = cy�0,y�y + O�y2� �126�

and therefore

�x
−�x,0� =

cxy�x,0�
cy�x,0�

− �x�x,0� . �127�

Thus the linear in � term in the electro-osmotic slip condition
�125� assumes the form

HS = V�
�x
−
y=0 − � cxy

cy
�

y=0
� . �128�

y=2:
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2 ln c − 
�−
y=2 = ln p1, �129�


�y
−
y=2 = 0, �130�


w
y=2 = 0, �131�


u
y=2 = �2 ln 2��x
−. �132�

In terms of �− and c concentration polarization solution

�114�–�116� reads c0�y�=y, �0
−�y�=0, v̂0=u0î+w0ĵ=0. The

linearized problem for the perturbations c1�x ,y , t�, �1
−, and

v1=u1î+w1ĵ of this solution reads

c1t + Pe w1 = �c1, �133�

c1t + Pe w1 =
D + 1

2D
� �c0 � �1

−� , �134�

1

Sc
�w1t = �2w1 + Bec, �135�


c1
y=0 = 0, �136�


�1y
− 
y=0 = 0, �137�


w1
y=0 = 0, �138�


w1y
y=0 = HS
lin + EO2

lin , �139�


c1 − �−
y=2 = 0, �140�


�1y
− 
y=2 = 0, �141�


w1
y=2 = 0, �142�


w1y
y=2 = − �2 ln 2��xx
− . �143�

Here

Bec = �� c1

y
− �1

−�
xx

1

y
−

2

y3� c1

y
− �1

−�
xx

, �144�

HS
lin = V�
c1yxx
y=0 − 
�xx

− 
y=0� , �145�

EO2
lin =

1

8
V2
c1yxx
y=0. �146�

Equations �133�–�143� yield the spectral �eigenvalue� prob-
lem in the form

�� + Pe w = �� − k2�, 0 � y � 2, �147�

�� + Pe w

y
=

D + 1

2D
��� +

��

y
− k2��, 0 � y � 2,

�148�

w�4� − �2k2 +
�

Sc
�w� + �k4 +

�k2

Sc
�w = − Bec

˜, 0 � y � 2,

�149�

��0� = 0, �150�

���0� = 0, �151�

w�0� = 0, �152�

w��0� = HS
˜+ EO2

˜ , �153�

��2� − ��2� = 0, �154�

���2� = 0, �155�

w�2� = 0, �156�

w��2� = 2 ln 2k2��2� . �157�

Here

Bec
˜= k2� D − 1

�1 + D�y2 ��� + Pe w� + 2
�� − �

y3 −
��

y2 � ,

�158�

HS
˜= Vk2���0� − ���0�� , �159�

EO2
˜ = −

V2

8
k2���0� , �160�

and �, �, and w are the Fourier transforms

��y� = �
−�

�

eikxc̄1�x,y�dx , �161�

��y� = �
−�

�

eikx�1
−�x,y�dx , �162�

w�y� = �
−�

�

eikxw̄1�x,y�dx , �163�

of the spatial factors c̄1, w̄1, �1
− in the representation

c1�x,y,t� = c̄1�x,y�e�t, �164�

�1
−�x,y,t� = �1

−�x,y�e�t, �165�

w1�x,y,t� = w̄1�x,y�e�t, �166�

where k is the wave number and � is the spectral parameter–
linear growth rate �Re �0 implies instability of solution

Eqs. �114�–�116�. Since Bec
˜ in the right-hand side of Eq.

�149� is singular at y=0, we employ the approach of Ref.
�33� and regularize the unperturbed solution by including in
it the higher order terms in �. Specifically, we assume that at
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the outer edge of the nonequilibrium boundary layer y=y0
the outer solution is matched with the inner one �see Eq.
�102��:

c̄�0� = c+�y0� =
�2/3

4
�F�0�2 + 2F��0��  � = 0.646�2/3  0,

�167�

and substitute �0�y�=ln�y+�� instead of �0�y�=ln y into
Eqs. �144� and �158�. This yields

Bec
˜= k2� D − 1

�1 + D��y + ��2 ��� + Pe w�

+ 2
�� − �

�y + ��3 −
��

�y + ��2� . �168�

Let us begin with analyzing electro-osmotic slip of the
second kind without bulk electroconvection: EO2�0, HS=0,
Bec=0. The spectral problem in this case becomes

�� + Pe w = �� − k2�, 0 � y � 2, �169�

�� + Pe w =
D + 1

2D
�y�� + �� − k2y��, 0 � y � 2,

�170�

w�4� − �2k2 +
�

Sc
�w� + �k4 +

�k2

Sc
�w = 0, 0 � y � 2,

�171�

��0� = 0, �172�

���0� = 0, �173�

w�0� = 0, �174�

w��0� = −
V2

8
k2���0� , �175�

��2� − ��2� = 0, �176�

���2� = 0, �177�

w�2� = 0, �178�

w��2� = 2 ln 2k2��2� . �179�

We begin with consideration of marginal stability while
assuming exchange of stabilities ��=0�. Substituting �=0,
integrating Eqs. �169� and �171� analytically with boundary
conditions �172�, �174�, and �178�, and solving the inhomo-
geneous Bessel equation �170� numerically with boundary
conditions �173� and �177� we find using boundary condi-
tions �175�, �176�, and �179� the dependence of voltage V on
the wave number k. In Fig. 3�a� we present the resulting
marginal stability curve in the V /k plane for Pe=0.5 and D
=0.1, 1, and 10. We point out the monotonic decrease of V�k�
with increasing k towards the “critical” shortwave threshold

value V̄=8, the same as was found analytically in “diffusion
layer” formulation �30,32�. To recover analytically this short-
wave threshold in the current case too, let us consider a
shortwave perturbation with k
1. Let us define a small pa-
rameter �=k−1. For ��1 and �=0, Eqs. �169�–�171� are
singularly perturbed with two boundary layers at y=0,2. In
order to construct a boundary layer solution valid near y=0,
we define the inner variable

FIG. 3. Marginal stability curves �voltage V vs wave number k�
for various limiting electro-osmotic formulations for Pe=0.5 and
three values of relative diffusivity D=0.1 �line 1�, D=1 �line 2�, and
D=10 �line 3�. �a� Electro-osmotic slip of the second kind without
bulk electroconvection �EO2�0, HS=0, Bec=0�. �b� Full slip for-
mulation without bulk electroconvection �EO2�0, HS�0, Bec

=0�. �c� Full limiting problem with bulk electroconvection �EO2

�0, HS�0, Bec�0�.
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s =
y

�
= ky . �180�

The solution of the respective inner problem bounded at s
→� and satisfying conditions �172�–�174� reads

�̄ = −
Pe

4
�s + 1�se−s, �181�

w̄

k2 = se−s. �182�

Substituting Eqs. �181� and �182�, into boundary condition
�175� yields the desired result

V̄ = lim
k→�

V�k� = 4� 2

Pe
. �183�

Similarly, for ��0 the solution of the respective inner prob-
lem reads

�̄ = Pe

− �2 −
1

Sc
�e−�1+�̃s − � 1

Sc
− 1�e−s + e−�1+�̃/Sc�s

�̃� 1

Sc
− 1� ,

�184�

w̄

k2 = �e−s − e−�1+�̃/Sc�s� , �185�

where

�̃ =
�

k2 . �186�

Substitution of Eqs. �184� and �185� into Eq. �175� yields the

following algebraic equation for �̃:

�̃

Pe Sc
=

V2

8

1

1 − Sc
�− �̃ + �1 − 2 Sc���1 + �̃ − 1�� .

�187�

For realistic values of the Schmidt number Sc=O�103�, Eq.
�187� yields for the largest eigenvalue the shortwave
asymptotic relation

�0  �Pe
V2 − V̄2

8
Sc�2/3

k2. �188�

The respective solution of the outer problem and right-edge
inner boundary layer problem is identical to zero.

Asymptotic expressions for smaller eigenvalues � are all
of diffusion type:

�n = − k2 + �2n2 + O� 1

k2�, n = 1,2, . . . . �189�

Let us note that a nontrivial inner boundary layer solution
corresponding to the unstable shortwave mode and leading to
the “short-wave” catastrophe appears because of the very

particular character of the nonequilibrium slip condition at
y=0 with tangent velocity proportional to the tangent deriva-
tive of the electric current, yielding the normal velocity of
the order O�k2�.

Finally, let us show that the “two solid walls” formulation,
as opposed to that for “diffusion layer” yields a characteristic
linear growth rate dependence on k �48� with a shortwave
instability accompanied by a slow decay of the long wave
mode. Let us expand �, �, and w in even powers of k for k
�1 as

� = �0 + O�k2� , �190�

� = �0 + k2�1 + O�k4� , �191�

w = k2w1 + O�k4� , �192�

� = �0 + �1k2 + O�k4� . �193�

Substitution of Eqs. �190�–�193� into Eq. �170� yields upon
integration with respect to y over the interval �0,2�, using
conditions �173� and �177�,

�0 = 0. �194�

Then, by substituting Eqs. �190�–�193� into Eqs. �169�–�179�
we find that

�0 =
y

2
, �195�

�0 = 1, �196�

w1 = �V2

16
+ � ln 2

2
−

V2

32
�y��y − 2�y . �197�

Integrating the next-order equation for �1

Pe w1 + �1�0 =
D + 1

2D
��y�1��� − �0y� , �198�

with respect to y we find, using Eq. �177�,

Pe�
0

2

w1dy = −
D + 1

D
− �1, �199�

or, substituting Eq. �197�,

�1 = Pe
32 ln�2� + V2

48
−

D + 1

D
. �200�

By defining

V� = lim
k→0

V�k� = 4�3�D + 1�
Pe D

− 2 ln 2 �201�

and referring to Eqs. �193� and �194� we finally conclude that
for k�1

� = k2 Pe
V2 − V� 2

48
+ O�k4� . �202�

Next, we analyze the full slip formula without bulk elec-
troconvection: EO2�0, HS�0, Bec=0. Here, the only differ-
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ence in the spectral problem compared to the previous case
�Eqs. �169�–�179�� resides in the inclusion of the linear V
term in the boundary condition �175�:

w��0� = − �V2

8
+ V�k2���0� + Vk2��0� . �203�

This inclusion, as seen from comparison of data in Fig. 3�b�
with those in Fig. 3�a� may have a considerable effect on
stability characteristics. �In particular, for D=10 the long

wave threshold V� is lower than the shortwave on V̄.� To
assess this effect analytically we reproduce below the short-
�k
1� and long-wave �k�1� asymptotic analysis which led
to expressions �183� and �201� and find expressions for

short- �V̄� and long-wave �V� � thresholds in this case.
Bounded solution of the relevant short wave �k
1� inner
problem for �=0 reads:

�̄ = −
Pe

4
�s + 1�se−s, �204�

w̄

k2 = se−s, �205�

�̄

k
= −

2D Pe

3�D + 1�
�s + 1�e−s, �206�

where s is defined by Eq. �180�. Substitution of Eqs.
�204�–�206� into the boundary condition �203� yields

V̄ = lim
k→�

V�k�

= 4�− 1 +
8D

3�D + 1�
+��1 −

8D

3�D + 1��
2

+
2

Pe
� .

�207�

There is no analytical solution to the inner boundary prob-
lems for ��0, thus these problems had to be solved numeri-
cally yielding results similar to the previous one: the largest

eigenvalue yields the “shortwave catastrophe” for V V̄ is
determined from solution of the suitable inner problem �as it
was done previously in Eq. �188�� whereas all smaller eigen-
values are negative corresponding to stable, decaying modes
behaving in a diffusionlike fashion Eq. �189�.

To complete comparison between the two slip formula-
tions �A� and �B�, let us consider the long-wave asymptotics
k�1. Similarly to Eqs. �195�–�197�, we find that for k�1

� =
y

2
+ O�k2� , �208�

�0 = 1 + O�k2� , �209�

w1 =
y�y − 2�

64
�2y�32 ln 2 − V2 + 8V� + 2V2 − 16V� .

�210�

Furthermore, similarly to Eqs. �200� and �201�, we find that

V� = lim
k→0

V�k� = 4�1 +�1 − 2 ln 2 +
3�D + 1�

D Pe
� �211�

and

� = k2 Pe

�V − V� ��V − 4�1 −�1 − 2 ln 2 +
3�D + 1�

D Pe
��

48

+ O�k4� . �212�

We note, in particular, that for D sufficiently large the long-
wave threshold is lower than the shortwave one.

We conclude this section with analysis of the full slip
formulation with bulk electroconvection: EO2�0, HS�0,
Bec�0. The relevant spectral boundary value problem reads:

�� + Pe w = �� − k2�, 0 � y � 2, �213�

�� + Pe w =
D + 1

2D
�y�� + �� − k2y��, 0 � y � 2,

�214�

w�4� − �2k2 +
�

Sc
�w� + �k4 +

�k2

Sc
�w

= − k2� D − 1

�1 + D��y + ��2 ��� + Pe w� + 2
�� − �

�y + ��3

−
��

�y + ��2�, 0 � y � 2, �215�

��0� = 0, �216�

���0� = 0, �217�

w�0� = 0, �218�

w��0� = − �V

8
2 + V�k2���0� + Vk2��0� , �219�

��2� − ��2� = 0, �220�

���2� = 0, �221�

w�2� = 0, �222�

w��2� = 2 ln 2k2��2� . �223�

Once again, we begin with consideration of marginal sta-
bility while assuming exchange of stabilities ��=0�. Substi-
tuting �=0, and integrating Eqs. �213�–�215� numerically we
find the dependence of the critical voltage V on the wave
number k. In Fig. 3�c� we present the marginal stability curve
for Pe=0.5 and three values of diffusivity D=0.1, 1, and 10.
Comparing this curve with those found in Figs. 3�a� and 3�b�
we conclude that bulk electroconvection has a stabilizing
effect. This conclusion is supported by the following calcu-
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lation of the long-wave threshold V� , similar to those leading
to Eqs. �201� and �211�. Thus, solving Eqs. �213�–�223�, we
find that for k�1

� =
y

2
+ O�k2� , �224�

�0 = 1 + O�k2� , �225�

w1

k2 =
1

2
��y + ��ln�y + �� − � ln � + �− 1 − ln � + V −

V2

8
�y

+ �3

2
− V +

V2

8
− �3

4
� + 1�ln

2 + �

�
− 2 ln 2�y2

+ �−
1

2
+ ln 2 +

V

4
−

V2

32
+

1 + �

4
ln

2 + �

�
�y3� + O�k2� ,

�226�

and

V� = lim
k→0

V�k� = 4�1 + �d� , �227�

where

d = −
1

2
+ �1

2
+

3

2
� +

3

4
�2�ln

2 + �

�
− 2 ln 2 −

3

2
�

+
3�D + 1�

D Pe
,

and

� = k2 Pe
�V − V� ��V − 4�1 − �d��

48
+ O�k4� . �228�

Comparing Eqs. �227� and �211� we conclude that taking into
account bulk electroconvection results in increasing the
threshold V. Let us note that the employed regularization
�167� and �68� leaves a trace of slight �O��
ln �
�� depen-
dence on � in the threshold value. Since the bulk force term
in Eq. �215� does not affect the leading order in k−2 the inner
left boundary layer problem �near y=0�, the short-wave

threshold V̄ is the same as in the previous case �see Eq.
�207��, with the “short wave” catastrophe occurring for V

 V̄. Thus we conclude that the stabilizing effect of bulk
electroconvection decreases with the increasing wave num-
ber k.

IV. LINEAR STABILITY OF QUIESCENT
CONCENTRATION POLARIZATION IN THE FULL

ELECTROCONVECTIVE FORMULATION

In order to simplify the full formulation Eqs. �1�–�5� and
�20�–�28�, and to avoid the detailed study of the double elec-
tric layer at the “enriched” anodic membrane’s surface �y
=2� we assume there local electroneutrality with local equi-
librium and limiting electro-osmotic slip of the kind Eq. �59�
which yields boundary conditions of the form:


�+
y=2 = ln p1, �229�


�y
−
y=0 = 0, �230�


�
y=2 = ��+ + �−

2
�

y=2
, �231�


u
y=2 = 
2 ln 2�x
−
y=2, �232�


w
y=0 = 0. �233�

Here �+ and �− are cationic and anionic electrochemical
potentials. Conditions �229� and �230� imply local equilib-
rium for cations at the membrane-solution interface and its
impermeability for anions whereas Eqs. �231� and �232� im-
ply, respectively, the local electroneutrality and the limiting
quasiequilibrium electro-osmotic slip.

The quiescent steady state concentration polarization so-
lution �0

±, �0, v0, p0 whose stability we are about to study is
found numerically as a solution of the following one-
dimensional boundary value problem:

�e�0
+−�0�0y

+ �y = 0, 0 � y � 2, �234�

�2�0yy = e�0
−+�0 − e�0

+−�0, 0 � y � 2, �235�


�0
+
y=0 = ln p1 − V , �236�


�0
y=0 = − V , �237�


�0
+
y=2 = ln p1, �238�


�0
y=2 =
1

2
ln�p1�

0

2

e�0dy� , �239�

�0
− = 
��0

+ − 2�0�
y=2, 0 � y � 2, �240�

v0 = 0, 0 � y � 2, 0 � y � 2, �241�

p0 =
1

2
�0y

2 + const, 0 � y � 2. �242�

Profiles in Figs. 1�a�, 1�b�, and 2 depict solutions of this
problem computed for different values of � and V, for p1
=1. The linearized problem for perturbations �1

±, �1, v�1

=u1î+w1ĵ reads

��1
+ − �1�t + Pe w1��0

+ − �0�y

=
D + 1

2
���1

+ + ��1
+ − �1��0yy

+ ���1
+ − �1�y

+ ��0
+ − �0�y��1

+ − �1���0y
+ + ��0

+ − �0�y�1y
+ � ,

�243�

��1
− + �1�t + Pe w1�0y =

D + 1

2D
���1

− + �0y�1y
− � , �244�

�2�1yy = e�0
−+�0��1

− + �1� − e�0
+−�0��1

+ − �1� , �245�
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1

Sc
�w1t = �2w1 + ��1xx�0y − �0yyy�1xx, �246�


�1
+
y=0,2 = 0, �247�


�1y
− 
y=0,2 = 0, �248�


�1
y=0 = 0, �249�


�2�1 + �1
−�
y=2 = 0, �250�


w1
y=0,2 = 0, �251�


w1y
y=0,2 = 0, �252�


w1y
y=2 = 
 − 2 ln 2�1xx
− 
y=2. �253�

Equations �243�–�253� yield a spectral problem in the form

Pe W��0
+� − �0�� =

D + 1

2
�M+� − k2M+ + �0

+��M+ − ���

+ ��0
+ − �0��M+� − ��

D + 1

2D

− �0
+���0

+ − �0�� − �0
+���M+ − ��� ,

�254�

Pe W�0� =
D + 1

2D
�M−� − k2M− + �0�M−� − ��M− + ��� ,

�255�

�2��� − k2�� = e�0
−+�0�M− + �� − e�0

+−�0�M+ − �� ,

�256�

W�4� − �2k2 +
�

Sc
�W� + �k4 +

�k2

Sc
�W

= − k2�0�� + k2��� − k2���0�, �257�


M+
y=0,2 = 0, �258�


M−�
y=0,2 = 0, �259�


�
y=0 = 0, �260�

2��2� + M−�2� = 0, �261�


W
y=0,2 = 0, �262�

W��0� = 0, �263�

W��2� − 2 ln 2k2M−�2� = 0. �264�

Here ��y ,k�, M±�y ,k�, and W�y ,k� are the Fourier trans-
forms of spatial factors of perturbations of the electric poten-

tial, ionic electrochemical potentials and normal velocity
with k and � being the wave number and linear growth rate,
respectively, equivalent to those in Eqs. �161�–�166�.

We start with the analysis of the shortwave asymptotic
behavior �k
1/�� of � in the problems �254�–�264� by con-
sidering asymptotic expansions of the form:

M± = M0
±�y� + O� 1

k2� , �265�

� = �0�y� +
�1�y�

k2 + O� 1

k4� , �266�

W = W0�y� + O� 1

k2� , �267�

� = �0k2 + �1
D + 1

2D
+ O� 1

k2� . �268�

By substituting these expansions into the spectral prob-
lems �254�–�264� we find that a nontrivial solution to the
leading order problem exists only if

�0 = −
2

D + 1
. �269�

The corresponding leading order solution is

M0
−�y� = 0, �270�

�0�y� = 0, �271�

W0�y� = 0, �272�

�1�y� = −
e�0

−+�0

�2 M0
+, �273�

whereas �1 and M0
+�y� are obtained from solution of the fol-

lowing eigenvalue problem:

M0
+� + �2�0

+ − �0��M0
+�

+ ��0
+���0

+ − �0�� +
e�0

−+�0

�2 − �1�M0
+ = 0, �274�


M0
+
y=0,2 = 0. �275�

Thus for very large wave numbers k
1/� the quiescent
concentration polarization solution is stable with perturba-
tions decaying in a diffusionlike fashion. This implies in turn
that the “shortwave catastrophe” does not occur in the full
formulation.

Next we study the long-wave asymptotics k�1 in the
spectral problems �254�–�264� by considering the following
expansions of M±, �, W, and � in even powers of k

M± = M0
± + k2M1

± + O�k4� , �276�

� = �0 + O�k2� , �277�

W = k2W1 + O�k4� , �278�
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� = �0 + �1k2 + O�k4� . �279�

Substitution of Eqs. �276�–�279� into Eq. �255�, followed by
multiplication by exp��0

−+�0� and integration with respect to
y over the interval �0, 2�, using condition �259� and normal-
ization condition for the perturbation of anion concentration
in the form

�
0

2

e�0�M0
− + �0�dy = 1 �280�

yields

�0 = 0. �281�

This yields the leading order problem of the form

M0
+� + ��0

+ − �0��M0
+� + �0

+��M0
+ − �0��

+ �0
+���0

+ − �0���M0
+ − �0� = 0, �282�

M0
−� + �0�M0

−� = 0, �283�

�2�0� − e�0
−+�0�M0

− + �0� + e�0
+−�0�M0

+ − �0� = 0,

�284�

W1
�4� + �0��0 − �0��0� = 0, �285�


M0
+
y=0,2 = 0, �286�

FIG. 4. Marginal stability curves �voltage V vs wave number k�
for full electroconvective problem with three values of � �1−�
=10−2 , 2−�=10−3 , 3−�=3�10−5� and Pe=0.5 for various rela-
tive diffusivities ��a� D=0.1, �b� D=1, and �c� D=10�.

FIG. 5. Comparison of marginal stability curves for different
formulations �1: full electroconvective problem, �=3�10−5, 2: full
limiting problem, EO2�0, HS�0, Bec�0, 3: full slip formulation
without bulk electroconvection, EO2�0, HS�0, Bec=0, 4: electro-
osmotic slip of the second kind without bulk electroconvection,
EO2�0, HS=0, Bec=0� with Pe=0.5 for various relative diffusivi-
ties ��a� D=0.1, �b� D=1, and �c� D=10�. Limiting curves �2–4�
have been shifted upwards to match at a common value at k=0.
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M0
−�
y=0,2 = 0, �287�


�0
y=0 = 0, �288�

2�0�2� + M0
−�2� = 0, �289�


W1
y=0,2 = 0, �290�

W1��0� = 0, �291�

W1��2� + 2 ln 2M0
−�2� = 0. �292�

Integrating Eq. �283� and using conditions �280� and �287�,
we find

M0
− =

1 − �
0

2

e�0�0dy

�
0

2

e�0dy

, �293�

with the rest of the solution calculated numerically. In order
to find �1 we use the next order equation for M1

−, which reads

Pe W1�0� =
D + 1

2D
�M1

−� + �0�M1
−� − 1� − �1. �294�

Integration of this equation in combination with conditions


M1
−�
y=0,2 = 0 �295�

yields

�1 = −
D + 1

2D
�

0

2

e�0dy + Pe�
0

2

W1�e
�0dy . �296�

Substituting �1=0 into Eq. �296� we obtain the equation for
the long-wave threshold potential V� :

�
0

2

W1�e
�0dy

�
0

2

e�0dy

=
D + 1

2D Pe
. �297�

FIG. 6. Normalized linear growth rate �� /k2� dependence on k
for �=10−3, Pe=0.5 and three values of voltage for various relative
diffusivities ��a� D=0.1; 1 : V=10.5, 2 : V=11.5, 3 : V=15, �b�
D=1; 1: V=16.5, 2 : V=17.5, 3 : V=20, �c� D=10; 1 : V=21,
2 : V=22, 3 : V=25�.

FIG. 7. �-dependence of the �a� long-wave threshold V� �continu-
ous line: exact value, dashed line: empirical formula V� =−ln �
+18.14�, �b� critical wave number kc �continuous line: exact value,
dashed line: empirical formula kc=−1/3.27 ln �+10.51�, for D=1,
Pe=0.5.
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This concludes our study of the short- and long-wave as-
ymptotics in the full electroneutral formulation. Below we
present the results of numerical solution of the spectral prob-
lems �254�–�264� for intermediate wave-number range and
the same three values of the ionic diffusivities ratios D
=0.1, 1, and 10 as in the previous section dealing with lim-
iting slip formulations. Thus in Fig. 4�a� we present the mar-
ginal stability curves in the V /k plane for D=0.1 and three
values of �=10−2, 10−3, and 3�10−5. It is observed that the
minimum in V versus k curve is the more pronounced, the
larger is �. In Fig. 5�a� we compare the marginal V /k curve
from Fig. 4�a� with �=3�10−5 with the respective marginal
stability curves obtained in various limiting formulations. We
point out the extremely close agreement between the mar-
ginal stability curve in the full formulation and that for the
full nonequilibrium slip formula �203� �with the important
exception that for the latter there is no wave number selec-
tion and shortwave singularity occurs�. Furthermore, in Fig.
6�a� we present the normalized linear growth rate � /k2 de-
pendence on k for �=10−3 and three values of voltage, one
below and two above the instability threshold. We point out
that in the unstable case these are dispersion relations of
Nikolaewsky type with a finite wave number instability ac-
companied by a slow decay of the long-wave mode �� van-
ishing as k2 with a negative coefficient�. The latter feature is
due to additional symmetry related to anion conservation in
the two charge-selective wall formulations considered
herein. Results for D=1 �Figs. 4�b�, 5�b�, and 6�b�� are quali-
tatively similar to those in Figs. 4�a�, 5�a�, and 6�a�. This is
not the case for D=10 �Figs. 4�c�, 5�c�, and 6�c�� character-
ized by long-wave instability and a slower convergence with
�. In Fig. 7�a� we present the �-dependence of the long-wave
threshold V� for D=1. �This threshold is useful for fixing the
unknown order O�
ln �
� shifts of potential in the asymptotic

limiting slip calculations.� Finally, in Fig. 7�b� we present the
�-dependence of the critical wave number kc��� for D=1.
The found dependence closely approximated by the empiri-
cal formula

kc = −
1

3.27
ln � + 0.51 �298�

is remarkably close to the leading order value kc=− 1
3 ln �

obtained in Ref. �33� for regularized nonequilibrium electro-
osmotic slip.

V. CONCLUDING REMARKS

Thus, summarizing the short-wave singularity of electro-
osmotic instability typical for the nonregularized limiting
nonequilibrium electro-osmotic formulations with equal
ionic formulations is removed by considering the full elec-
troconvective formulation. �Shortwave singularity also dis-
appears in certain limiting electro-osmotic formulations with
differing ionic diffusivities.� Additional symmetry related to
conservation of coions in a system flanked by charge selec-
tive membranes yields slow decay of long-wave perturbation
modes which, combined with shortwave instability is likely
to result in spatiotemporal chaos at the nonlinear stage. We
reiterate the peculiarity of the obtained linear stability results
for large cation diffusivity �D
1�. Comparison of these re-
sults with those of numerical solution of the full non-linear
problem will be the topic of our forthcoming study �49�.
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